首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26625篇
  免费   2631篇
  国内免费   1481篇
电工技术   407篇
综合类   1603篇
化学工业   11693篇
金属工艺   1581篇
机械仪表   323篇
建筑科学   684篇
矿业工程   361篇
能源动力   3285篇
轻工业   2621篇
水利工程   126篇
石油天然气   1560篇
武器工业   246篇
无线电   956篇
一般工业技术   3107篇
冶金工业   1125篇
原子能技术   611篇
自动化技术   448篇
  2024年   43篇
  2023年   865篇
  2022年   1066篇
  2021年   1187篇
  2020年   1204篇
  2019年   1126篇
  2018年   1010篇
  2017年   1077篇
  2016年   952篇
  2015年   839篇
  2014年   1283篇
  2013年   1588篇
  2012年   1552篇
  2011年   1713篇
  2010年   1261篇
  2009年   1372篇
  2008年   1196篇
  2007年   1542篇
  2006年   1385篇
  2005年   1172篇
  2004年   1065篇
  2003年   942篇
  2002年   827篇
  2001年   736篇
  2000年   629篇
  1999年   531篇
  1998年   411篇
  1997年   347篇
  1996年   322篇
  1995年   279篇
  1994年   270篇
  1993年   204篇
  1992年   154篇
  1991年   110篇
  1990年   96篇
  1989年   66篇
  1988年   53篇
  1987年   49篇
  1986年   20篇
  1985年   29篇
  1984年   29篇
  1983年   13篇
  1982年   13篇
  1980年   10篇
  1964年   9篇
  1963年   5篇
  1961年   5篇
  1957年   8篇
  1955年   8篇
  1951年   21篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Atomically dispersed transition metals anchored on N-doped carbon have been successfully developed as promising electrocatalysts for acidic oxygen reduction reaction (ORR). Nonetheless, how to introduce and construct single-atomic active sites is still a big challenge. Herein, a novel concave dodecahedron catalyst of N-doped carbon (FeCuNC) with well confined atomically dispersed bivalent Fe sites was facilely developed via a Cu-assisted induced strategy. The obtained catalyst delivered outstanding ORR performance in 0.5 M H2SO4 media with a half-wave potential (E1/2) of 0.82 V (vs reversible hydrogen electrode, RHE), stemming from the highly active bivalent Fe-Nx sites with sufficient exposure and accessibility guaranteed by the high specific surface area and curved surface. This work provides a simple but efficient metal-assisted induced strategy to tune the configurations of atomically dispersed active sites as well as microscopy structures of carbon matrix to develop promising PGM-free catalysts for proton exchange membrane fuel cell (PEMFC) applications.  相似文献   
92.
The electrochemical oxygen reduction reaction (ORR) via two-electron pathway is a sustainable way of producing hydrogen peroxide. Nanostructured carbon materials are proved to be effective catalysts for 2e? ORR. Herein, a series of mesoporous carbon with tunable nitrogen species and oxygen functional groups were synthesized by varying the added amount of dopamine hydrochloride as nitrogen and oxygen source. The modified catalysts exhibited higher content of pyrrolic-N and ether C–O groups which are confirmed by a series of characterization. Raman spectra and correlation analysis revealed that the increased proportion of defect sites in carbon materials are closely related to the introduced pyrrolic-N and ether C–O groups. And the rotating ring-disk electrode (RRDE) measurement carried out in 0.1 M KOH electrolyte showed the H2O2 selectivity increased with the content of defect sites. Among them, the optimized catalyst (NOC-6M) exhibited a selectivity of 95.2% and a potential of 0.71 V vs. RHE at ?1 mA cm?2. Moreover, NOC-6M possessed the high H2O2 production rate of 548.8 mmol gcat?1 h?1 with faradaic efficiency of 92.4% in a two-chamber H-cell. Further mechanistic analysis revealed that the introduction of pyrrolic-N and ether C–O are likely to improve the binding energy of the defect sites toward 1OOH intermediate, resulting in a more favorable 2e? ORR pathway for H2O2 production.  相似文献   
93.
A uniform solid product layer normally assumed in the shrinking-core model cannot predict the kinetic transition behavior of the H2 adsorption reactions. In this study, the concept of a uniform solid product layer has been replaced by that of the inward growth of solid products on the solid surface. A rate equation is established to calculate the inward growth of the solid product and was implemented into the shrinking-core model to calculate the H2 adsorption kinetics for various shapes of Mg-based materials. The prediction accuracy of the developed model is verified from the detailed experimental data. To account for the external gas diffusion around the particle and the intraparticle gas diffusion, an analytical equation is derived using the Thiele modulus method. This model can be used to analyze various kinetic aspects and to analyze the effect of change in the particle microstructure on intraparticle diffusion.  相似文献   
94.
Electrochemical reactions such as the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and methanol oxidation reaction (MOR) are essential for energy conversion applications such as water electrolysis and fuel cells. Furthermore, Pt or Ir-related materials have been extensively utilized as electrocatalysts for the OER, ORR, and MOR. To reduce the utilization of precious metals, innovative catalyst structures should be proposed. Herein, we report a bi-metallic phosphide (Ni2P and PdP2) structure surrounded by graphitic carbon (Ni–Pd–P/C) with an enhanced electrochemical activity as compared to conventional electrocatalysts. Despite the low Pd content of 3 at%, Ni–Pd–P/C exhibits a low overpotential of 330 mV at 10 mA cm?2 in the OER, high specific activity (2.82 mA cm?2 at 0.8 V) for the ORR, and a high current density of 1.101 A mg?1 for the MOR. The superior electrochemical performance of Ni–Pd–P/C may be attributed to the synergistic effect of the bi-metallic phosphide structure and core-shell structure formed by graphitic carbon.  相似文献   
95.
We report the catalytic enhancement of hydrogen generation by 1) in situ Fe (0) formed and 2) nitroarenes substrates during Fe3O4@Pd core-shell nanoparticles catalyzed tandem reaction. The active hydrogen species are generated in Pd shell, which either combine to form H2 gas or take part in relatively faster nitroarene reduction reaction. The rate of hydrogen generation from ammonia borane is dependent on the nitroarene substrate and is higher when 4-nitrophenol is used. This is due to the difference in ammonia borane adsorption on the surface of the catalyst. During recyclability, the H2 generation rate of 2 wt% Pd loaded samples is higher than other compositions. Such an enhancement has been attributed to the formation of Fe (0) via γ-FeOOH mediated by Pd species, presumably through Pd(OH)2. The electronic connection between Fe and Pd interface is thus shown to play an important role in the catalytic enhancement of the tandem reaction.  相似文献   
96.
Water electrolysis is an energy conversion technology to provide green and clean hydrogen energy. Developing a high-efficient and durable electrocatalyst is a critical material for water electrolysis. Therefore, we synthesize a series of iron-doped metal-organic frameworks (MOFs) by a facile one-pot hydrothermal method. In the conventional three-electrode-cell, the Co/Fe (1:1)-MOF catalyst exhibits an overpotential of 317 mV at a current density of 10 mA cm−2 in the oxygen evolution reaction (OER). Furthermore, the electrolysis performance of Co/Fe (1:1)-MOF catalyst is further evaluated in a home-made anion-exchange-membrane water electrolysis cell. With the Co/Fe (1:1)-MOF as the OER catalyst and commercial Pt/C as the hydrogen-evolution-reaction catalyst, the cell presents an overpotential of 490 mV at a large current density of 500 mA cm−2, which is superior to the benchmark cell with commercial IrO2 as the OER catalyst in the alkaline media. Theoretical calculation demonstrates that the introduction of Fe dopant into MOFs significantly reduces the binding energy of 1O and 1OOH intermedium during the OER progress. Consequently, the electrocatalytic activity is increased, which is perfectly consistent with the experimental results. This work suggests that the iron-doped MOFs structure significantly improves the electrocatalytic activity and provides a facile strategy to produce hydrogen at a large current density for industrial water electrolysis.  相似文献   
97.
The exploration of efficient, low-cost and earth-abundant oxygen-evolution reaction (OER) electrocatalysts and the understanding of the intrinsic mechanism are important to advance the clean energy conversion technique based on electrochemical water oxidation. In this work, Fe-doping Co3N catalysts were successfully synthesized by a simple nitridation reaction of the Co3-xFexO4 precursor. This material exhibited a low overpotential of 294 mV at a current density of 10 mA cm?2, and a small Tafel slope of 49 mV dec?1 in 1 M KOH solution, superior to the performance of Co3N and IrO2. As revealed by the spectroscopic and electrochemical analyses, the enhanced OER performance mainly originates from the electronic modulation induced by the incorporation of Fe into Co3N, benefitting the formation of CoOOH as active surface species and thus facilitating the OER process. These findings also demonstrate the introduction of heterogeneous element is a simple and effective strategy to regulate the OER property of the cobalt nitrides (Co3N) catalysts.  相似文献   
98.
Electrocatalytic hydrogen evolution under alkaline media holds great promising in hydrogen energy production. Transition-metal sulfides (TMSs) are attractive for electrocatalytic alkaline hydrogen evolution, yet their catalytic performance is unsatisfactory owing to the sluggish water dissociation kinetics. Herein, a Mn/N co-doping strategy is proposed to regulate the water dissociation kinetics of Co9S8 nanowires array grown on nickel foam thus improve the activity of hydrogen evolution reaction (HER). The optimal Mn/N co-doping Co9S8 (Mn–N–Co9S8) catalyst achieves low overpotentials of 102 and 238 mV at 10 and 100 mA cm?2 in the 1 M KOH solution, respectively, remarkably higher than the single-doping Mn–Co9S8 and N–Co9S8 as well as superior to many reported Co9S8-based HER electrocatalysts. Density functional theory (DFT) calculation results confirm that the water dissociation barrier of the Mn–N–Co9S8 is reduced significantly owing to the synergistic co-doping of Mn and N, which accounts for the enhanced alkaline HER performance. This study offers an effective strategy to enhance the alkaline HER activity of TMSs by accelerating water dissociation kinetic via the cation and anion co-doping strategy.  相似文献   
99.
Splitting water for hydrogen production is still a promising technique to meet the energy requirements of society and overcome many environmental problems. However, the development of carbon-based transition electrocatalysts with superior activity for hydrogen evolution reaction (HER) is still challenging. In this study, a CoNiMo/NPC electrocatalyst was successfully fabricated using ZIF-67 as a precursor via facile absorption, pyrolysis and annealing processes. The fabricated CoNiMo/NPC was used as an electrocatalyst for hydrogen production. The results revealed that the doping of Ni and Mo increase the number of active sites and enhance the conductivity of electrocatalysts. CoNiMo/NPC exhibits excellent HER activity in alkaline solutions and only requires an overpotential of 182 mV to reach a current density of 10 mA/cm2. Furthermore, long-term measurements demonstrated that CoNiMo/NPC has superior durability in alkaline solutions. The excellent HER performance of CoNiMo/NPC can be attributed to the doping of Co, Ni, and Mo on porous carbon. In addition, the high specific surface area and high graphitisation degree of the electrocatalyst are beneficial for rapid charge transport and collection.  相似文献   
100.
Developing efficient oxygen evolution reaction (OER) electrocatalysts with earth-abundant elements is very important for sustainable H2 generation via electrochemical water splitting. Here we design a crystalline-amorphous Ni–Fe–Al hybrid phosphides nanosheet arrays grown on NiFe foam for efficient OER application. Dynamic surface reorganization of phosphides at anodic/cathodic polarizations is probed by in situ Raman spectroscopy. The reconstructed amorphous Ni(Fe)OOH species are determined as the active phases that facilitate the OER process. This unique electrode shows highly catalytic activity toward water oxidation, achieving the current densities of 10 and 100 mA cm?2 at 181 and 214 mV in 1 M KOH, respectively. Meanwhile, it also exhibits excellent stability at a large current density of 100 mA cm?2 for over 60 h. This work reveals the dynamic structural transformation of pre-catalyst in realistic conditions and highlights the important role of oxyhydroxides as real reactive species in OER process with high activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号